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Abstract. The nonclassical reduction method as pioneered by Bluman and Cole (J. Meth.
Mech. 18 1025–42) is used to examine symmetries of the full three-dimensional, unsteady,
incompressible Navier–Stokes equations of fluid mechanics. The procedure, when applied
to a system of partial differential equations, yields reduced sets of equations with one fewer
independent variables. We find eight possibilities for reducing the Navier–Stokes equations in
the three spatial and one temporal dimensions to sets of partial differential equations in three
independent variables. Some of these reductions are derivable using the Lie-group method of
classical symmetries but the remainder are genuinely nonclassical. Further investigations of one
of our eight forms shows how it is possible to derive novel exact solutions of the Navier–Stokes
equations by the nonclassical method.

1. Introduction

The overwhelming majority of important governing equations in physics take the form
of nonlinear partial differential equations, commonly systems of equations, and so are
frequently virtually impossible to solve explicitly. A multitude of methods have been
developed in order to obtain approximate solutions, including perturbation, asymptotic and
numerical techniques. Even so there remains intense interest in finding exact solutions,
for not only are they of intrinsic mathematical value but they can also describe important
physical phenomena and, if for no other purpose, they serve as excellent paradigms against
which numerical algorithms can be tested and compared.

In this manuscript we study the unsteady Navier–Stokes equations which govern the
three-dimensional motion of an incompressible, Newtonian viscous fluid. These equations
play a central role in much research within applied mathematics, physics and engineering
and, in their most compact form, may be written

ut + (u · ∇)u+∇p − ν∇2u = 0 (1.1a)

∇ · u = 0 (1.1b)

whereu(x, t) = (u1(x, t), u2(x, t), u3(x, t)) are the velocity components,x = (x1, x2, x3)

denote the usual Cartesian coordinates,p(x, t) is the fluid pressure,ν is the kinematic
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viscosity, t the time,∇ ≡ (∂x1, ∂x2, ∂x3) and∇2 ≡ (∂2
x1
, ∂2
x2
, ∂2
x3
), with ∂x1 = ∂/∂x1. Our

search for exact solutions of (1.1a, b) will utilize a symmetry reduction technique and, by
this, we mean a transformation of the independent and dependent variables such that the
number of variables in the transformed system is at least one less than in the original system.
Multiple applications of this symmetry reduction technique makes it theoretically possible
to reduce the system (1.1a, b) to a system of ordinary differential equations. However, in
this work our goal is more modest: the objective here is to reduce the system (1.1a, b),
which contains four independent variables, to systems with just three independent variables.

Much of the theory behind symmetry reductions stems from work by Lie who
investigated methods of solving ordinary differential equations by turning the problem into
one of quadrature. He later extended his ideas to partial differential equations and the salient
features as far as we need them are as follows. Suppose we have a second-order system
of partial differential equations inm dependent variablesu = (u1, u2, . . . , um) andn + 1
independent variablesx = (x0, x1, x2, . . . , xn):

∆(x,u,u(1),u(2)) = 0 (1.2)

whereu(1) andu(2) denote the sets of partial derivatives ofu of first and second orders,
respectively (below we make the identificationx0 = t). Then consider the one-parameter
continuous Lie group of infinitesimal point transformations of the variablesx, u given by

x∗ = x+ εX(x,u)+O(ε2)

u∗ = u+ εU (x,u)+O(ε2)
(1.3)

whereε is the group parameter andX = (X0, X1, X2, . . . , Xn) andU = (U1, U2, . . . , Um)

are called theinfinitesimalsof the transformation. The associated Lie algebra of infinitesimal
symmetries is the set of vector fields of the form

v =
n∑
i=0

Xi
∂

∂xi
+

m∑
k=1

Uk
∂

∂uk
. (1.4)

Substitution of (3.2) into (1.2) combined with use of the chain rule and Taylor’s theorem
shows that the transformed variablesx∗,u∗ satisfy (1.2) if and only if

pr(2)v(∆(x,u,u(1),u(2)))|∆=0 = 0 (1.5)

where pr(2)v is the second prolongation of the vector field (1.4) given by

pr(2)v ≡ v +
m∑
k=1

n∑
i=0

φ
[i]
k

∂

∂uk,i
+

m∑
k=1

n∑
i,j=0

φ
[ij ]
k

∂

∂uk,ij

with

uk,i ≡ ∂uk

∂xi
uk,ij ≡ ∂2uk

∂xi∂xj
k = 1, 2, . . . , m, i, j = 0, 1, . . . , n

andφ[i]
k andφ[ij ]

k , respectively, are the infinitesimals associated withuk,i anduk,ij , which
are explicitly given in terms ofX andU and their derivatives. The requirement that the
transformation (3.2) mapsS∆ := {u(x) : ∆ = 0}, the set of solutions of (1.2), into itself,
yields an overdetermined system of linear equations for the infinitesimalsX andU and
the solution of these yields the symmetries of (1.2). The classical method then proceeds to
find the associated symmetry reduction by solving the invariant surface conditions

ψ ≡ (X · ∇)u−U = 0 (1.6)

which are a system of quasilinear first-order partial differential equations. The solution of
(1.6), when substituted in (1.2), yields a reduced system of equations which depend on at
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most n independent variables. There are several comprehensive accounts of the classical
method (cf [3, 25, 26]).

Bluman and Cole [2] made an important breakthrough in the theory of symmetry
reductions and it is their technique that we shall be using here. In their study of symmetry
reductions of the linear heat equation, they proposed the so-called ‘nonclassical method
of group-invariant solutions’, which is a generalization of the classical Lie method. To
apply the classical method, the condition (1.5) is satisfied by demanding that each of
the coefficients of different derivatives are zero, thereby giving rise to a linear system of
equations. Bluman and Cole [2] observed that all that is essentially required for a reduction
is that

pr(2)(∆(x,u,u(1),u(2)))|∆=0,ψ=0 = 0. (1.7)

Thus one requires that the set of simultaneous solutions of (1.2) and (1.6) is invariant under
the transformation (3.2), i.e. the subset ofS∆ given byS∆,ψ = {u(x) : ∆ = 0,ψ = 0}
is invariant under the transformation (3.2). Thus ‘nonclassical symmetries’ or ‘conditional
symmetries’, of a system of partial differential equations (1.2) are transformations that leave
only the subsetS∆,ψ of the solution setS∆ of the system (1.2) invariant; other solutions
of (1.2) that arenot in the subsetS∆,ψ arenot necessarily transformed toS∆.

This procedure yields an overdetermined,nonlinear system of equations, as opposed to
a linear system in the classical case, for the infinitesimalsX andU , which appear in both
the transformations (3.2) and the supplementary condition (1.6). The number of determining
equations arising in the nonclassical method is smaller than for the classical method, since
there are fewer linearly independent expressions in the derivatives. Since all solutions of the
classical determining equations necessarily satisfy the nonclassical determining equations,
the solution set may be larger in the nonclassical case. We remark that for some equations
the infinitesimals arising from the classical and nonclassical methods coincide. It should
be emphasized that the vector fields associated with the nonclassical method do not form
a vector space, still less a Lie algebra, since the invariant surface condition (1.6) depends
upon the particular reduction. For example, the sum of two nonclassical symmetry operators
is not, in general, a symmetry operator at all; similarly the commutator of two nonclassical
symmetry operators and the sum of a classical symmetry operator and a nonclassical
symmetry operator also are not, in general, symmetry operators.

Both the classical and nonclassical methods have the property that they reduce a system
of p equations inm dependent andn+1 independent variables to one of at mostm dependent
andn independent variables; however, the determining equations for the nonclassical method
are nonlinear. Furthermore, the nonclassical method has thus far been developed so as to
reduce the number of independent variables by precisely one at a time, so that the technique
must be usedn times in order to reduce a system of partial differential equations inn+ 1
independent variables to a system of ordinary differential equations. The principal hurdle in
the practical implementation of the nonclassical method is the solution of the overdetermined
nonlinear system for the infinitesimals. This problem has been somewhat alleviated by
developments in the field of differential Gröbner bases and for this work we use ideas
based on the work of Mansfield [21] which addresses the issue of overdetermined systems
of partial differential equations polynomial in their derivative terms (see also [23, 24]).
The calculations described below were executed using the symbolic manipulation package
MACSYMA using the programsymmgrp.max developed by Champagneet al [6] which
we modified so as to generate the determining equations for the nonclassical method (see
also [8, 11]).

Our objective here is to determine systematically all nonclassical reductions of the
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unsteady, incompressible three-dimensional Navier–Stokes equations (1.1a, b) to systems
with three independent variables. We remark that some exact solutions of the Navier–
Stokes equations (1.1a, b) which do not arise from classical symmetry reductions have
been given by Boisvertet al [4], Clarkson [7], Fushchychet al [17] and Fushchych and
Popowych [15, 16]. However, these investigations are neither complete nor systematic.
In fact, Fushchych and Popowych [16] state that an important open problem is the study
of nonclassical reductions, which they refer to as conditional symmetries, of the Navier–
Stokes equations (1.1a, b). As has already been mentioned we undertake the initial step
in the problem by reducing the original system (1.1a, b) with four independent variables
to systems with just three independent variables. The nature of the work means that it
is virtually impossible to give a detailed description of all the calculations and so, in the
main, we restrict ourselves to stating the essential items. Much more detail can be obtained
from the first author’s PhD thesis [20]. In the next section we give the infinitesimals which
arise when one applies the classical Lie method to the Navier–Stokes equations (1.1a, b). In
section 3 we consider the nonlinear determining equations for the nonclassical infinitesimals
and obtain the associated reductions arising from solving the associated invariant surface
conditions (1.6) in section 4; in particular we obtain some new reductions of the Navier–
Stokes equations (1.1a, b) which are not obtainable using the classical Lie method. A
discussion of the findings and their implications for further work is given in section 5 and
we illustrate this with some examples of new exact solutions of the Navier–Stokes equations
(1.1a, b) that can be obtained from the reductions given in section 4.

2. Classical symmetries

There have been several investigations into the application of the classical Lie method to
the two-dimensional Navier–Stokes equations (cf [5, 18, 27]). However, analogous work for
the three-dimensional Navier–Stokes equations is much scarcer. Lloyd [19] and Boisvert
et al [4] determined the infinitesimals of the Navier–Stokes equations (1.1a, b) as

x = c4x+ c ∧ x+ τ (t)
T = 2c4t + c5

u = −c4u+ c ∧ u+ τ ′(t)
P = −2c4p − x · τ ′′(t)+ τ4(t)

(2.1)

whereX, T , U , P are the infinitesimals corresponding to the variablesx, t , u and p,
respectively,c = (c1, c2, c3), τ (t) = (τ1(t), τ2(t), τ3(t)) with cj , j = 1, 2, . . . ,5, arbitrary
constants andτk, k = 1, 2, 3, arbitrary functions. These results may be used to show that
the following five transformations of coordinates leave (1.1a, b) invariant:

(x, t,u, p) 7−→ (x, t + ε,u, p)a (2.2a)

(x, t,u, p) 7−→ (eεx, e2εt, e−εu, e−2εp) (2.2b)

(x, t,u, p) 7−→ (Ox, t,Ou, p) (2.2c)

(x, t,u, p) 7−→ (x+ f(t), t,u+ f ′(t), p − x · f ′′(t)− 1
2f
′(t) · f ′′(t)), (2.2d)

(x, t,u, p) 7−→ (x, t,u, p + g(t)) (2.2e)

whereO is an arbitrary constant orthogonal matrix andf(t) = (f1(t), f2(t), f3(t)) andg(t)
are arbitrary functions. These symmetries represent (2.2a) time symmetries, (2.2b) scalings,
(2.2c) rotations, (2.2d), moving coordinates (which include spatial translations and Galilei
transformations) and (2.2e) pressure changes. We shall use these invariances to simplify
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our final forms of reductions and, moreover, it is to be borne in mind that all the reductions
quoted subsequently can always be generalized by use of (2.2a–e).

Fushchychet al [17] constructed algorithmically all classical symmetry reductions
of (1.1a, b) which take them directly into ordinary differential equations by calculating
inequivalent three-dimensional subalgebras of the Lie algebra of symmetries generated by
the transformations (2.2). Subsequently, Fushchych and Popowych [15, 16] determined
systematically reductions of (1.1a, b) to partial differential equations and then extended their
results by seeking further reductions of these partial differential equations. After sufficient
repetitions of this procedure one is left with only ordinary differential equations. It should
be noted that the reduction of partial differential equations of three or more independent
variables directly to ordinary differential equations via classical symmetries is in generalnot
equivalent to reduction to ordinary differential equations through a sequence of lower-order
partial differential equations.

3. The nonclassical infinitesimals

The determination of nonclassical reductions of (1.1a, b) is equivalent to finding classical
reductions of (1.1a, b) augmented by the conditions

(X · ∇)u+ Tut −U = 0 (X · ∇)p + Tpt − P = 0 (3.1)

whereX, T , U , P , which are all functions ofx, t , u and p, are the infinitesimals
corresponding to the requisite variables (cf [11]). In using the nonclassical method one is
at liberty to minimize the necessary computation by appealing to the fact that both(X,U )
and (αX, αU ), whereα is any function ofu andx in the notation of (1.2), define the
same invariant surface condition. For a nontrivial condition at least one component ofX
has to be nonzero and so without loss of generality we take its value to be unity. Bearing
this in mind there are essentially two cases to consider depending on whetherT vanishes
or not. If T 6≡ 0 then we setT ≡ 1, without loss of generality, whilst ifT ≡ 0 then we
setX3 ≡ 1, without loss of generality, since there is discrete symmetry in the rotation of
subscripts and at least one ofXi , for i ∈ {1, 2, 3}, must be nonzero.

3.1. Infinitesimals whenT ≡ 1

On application of the programsymmgrp.max to (1.1a, b) and (1.2) one may back-substitute
for u1,x3x3, u2,x1x1 and u3,x2x2 from (1.1a), u1,t , u2,t , u3,t and pt from (1.2) and foru3,x3

from (1.1b). The program generates 747 determining equations which are then simplified
to a comparatively modest 84 equations in seven dependent variables. These 84 equations
consist of 71 linear equations (of which 39 are one-term equations and 26 are two-term
equations) and 13 nonlinear equations. Solving this reduced set yields two canonical forms
of nonlinear infinitesimals (see [20] for further details):

x = x+ c ∧ x+ τ (t)
2(t − t0)

T = 1

u = −u+ c ∧ u+ τ
′(t)

2(t − t0)
P = −2p − x · τ ′′(t)+ τ4(t)

2(t − t0)

(3.2a)
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x = c ∧ x+ τ (t)
T = 1

u = c ∧ u+ τ ′(t)
P = −x · τ ′′(t)+ τ4(t)

(3.2b)

where c = (c1, c2, c3) is an arbitrary constant vector,t0 is an arbitrary constant and
τ (t) = (τ1(t), τ2(t), τ3(t)) is a vector function. These infinitesimals are classical and
obtained from (2.1) by settingc4 = 1, c5 = −2t0 andc4 = 0, c5 = 1, respectively.

3.2. Infinitesimals whenT ≡ 0

In order to ensure thatsymmgrp.max back-substitutes in the most efficient manner, it is
expedient to appeal to (3.2a) and thereby recast (1.1b) as

U1,x1 + u2,x2 + U3−X1u3,x1 −X2u3,x2 = 0 (3.3a)

while also appended to the system (1.1a), (3.2a, b) and (3.3a) are

D1(u1,x1 + u2,x2 + U3−X1u3,x1 −X2u3,x2) = 0 (3.3b)

D3(X1ux1 +X2ux2 + u3−U ) = 0 (3.3c)

D3(X1px1 +X2px2 + px3 − P) = 0 (3.3d)

where Di denotes the total differential operator

Di ≡ ∂

∂xi
+

3∑
j=1

∂uj

∂xi

∂

∂uj
+ ∂p

∂xi

∂

∂p
.

The derivativesu1,t , u2,t andu3,t are eliminated by back-substitution from (1.1a), u1,x3x3,
u2,x3x3, u3,x3x3 andpx3 eliminated by use of (3.3c, d), u1,x1x1 by (3.3b) andu1,x1 from (3.3a).
This done,symmgrp.max obtains 564 equations which are simplified to 110 equations,
which consist of 11 (one-term) linear equations and 99 nonlinear equations. Solving these
yields three further canonical infinitesimal forms (see [20] for further details):

x = k[k · x+ τ1(t)]

T = 0

u = k[k · x+ τ ′1(t)]
P = τ ′′1 (t)[k · x+ τ1(t)] + τ2(t)[k · x+ τ1(t)]

2

(3.4a)

x = k[k · x+ τ1(t)]

T = 0

u = k[k · x+ τ ′1(t)] +
kτ3(t)

k · x+ τ1(t)

P = τ ′′1 (t)[k · x+ τ1(t)] + τ2(t)[k · x+ τ1(t)]
2+ 1

2τ
′
3(t)+

τ 2
3 (t)

4[k · x+ τ1(t)]2

(3.4b)

and
x = c ∧ x+ τ (t)
T = 0

u = c ∧ u+ τ ′′(t)
P = −x · τ ′′(t)+ τ4(t).

(3.4c)

We remark thatk ≡ (k1, k2, 1) where k1 and k2 are constants. In addition, for the
infinitesimals (3.4b) the vectork must satisfyk · k = 0 so that this reduction is complex.
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4. Nonclassical reductions

The solution of the invariant surface conditions (1.6) corresponding to the five infinitesimals
(3.2a, b), (3.4a–c) given above are best studied in four parts. Rather than set out the details
of each calculation, which may be found in [20], for the sake of brevity we restrict ourselves
to a list of the final forms of the reductions. One of the difficult issues in these calculations
is the decision as to how to select the particular form of each reduction so as to leave
the resultant partial differential equations in as concise a form as possible. Bearing in
mind that further studies of nonclassical reductions of the Navier–Stokes equations will
necessitate consideration of the lower-order partial differential equation systems quoted
here, it is desirable to make these as simple as possible. Unfortunately, as with most partial
differential equations, the most succinct form of reduction does not necessarily lead to the
easiest form of the reduced partial differential equations.

4.1. Reductions arising from infinitesimals (3.2)

We commence with infinitesimals (3.2a).

Reduction 1.Solving the associated surface conditions (1.6) with infinitesimals (3.2a) yields
the following reduction

u(x, t) = t−1/2A(t)v(ξ) (4.1a)

p(x, t) = t−1q(ξ) (4.1b)

whereξ = t−1/2AT (t)x andv(ξ) andq(ξ) satisfy

∇ξ · v = 0 (4.1c)

− 1
2Bv − 1

2(·B∇ξ )v + (v · ∇ξ )v +∇ξ q − ν∇2
ξ v = 0 (4.1d)

and the matricesA(t) andB are given by either

A(t) =
 cos( 1

2c ln t) − sin( 1
2c ln t) 0

sin( 1
2c ln t) cos( 1

2c ln t) 0
0 0 1

 (4.1e)

B =
( 1 c 0
−c 1 0
0 0 1

)
(4.1f)

or

A(t) =
 1− 1

8c
2(ln t)2 − 1

8ic2(ln t)2 1
2c ln t

− 1
8ic2(ln t)2 1+ 1

8c
2(ln t)2 1

2ic ln t
− 1

2c ln t − 1
2ic ln t 1

 (4.1g)

B =
( 1 0 −c

0 1 −ic
c ic 1

)
(4.1h)

with c an arbitrary constant.

Reduction 2.Solving the associated surface conditions (1.6) with infinitesimals (3.2b) yields
the reduction

u(x, t) = A(t)v(ξ) (4.2a)

p(x, t) = q(ξ) (4.2b)
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whereξ = AT (t)x andv(ξ), q(ξ) satisfy

∇ξ · v = 0 (4.2c)

Bv + (ξ · B∇ξ )v + (v · ∇ξ )v +∇ξ q − ν∇2
ξ v = 0 (4.2d)

andA(t) andB are matrices given either by

A(t) =
( cosct − sinct 0

sinct cosct 0
0 0 1

)
(4.2e)

B =
( 0 −c 0
c 0 0
0 0 0

)
(4.2f)

or

A(t) =
 1− 1

2c
2t2 − 1

2ic2t2 ct

− 1
2ic2t2 1+ 1

2c
2t2 ict

−ct −ict 1

 (4.2g)

B =
( 0 0 c

0 0 icc
−c −ic 0

)
. (4.2h)

4.2. Reductions arising from infinitesimals (3.4a, b)

Reduction 3.Solving the associated surface conditions (1.6) with infinitesimals (3.4a) yields
the reduction

u1(x, t) = v1(ξ, t)+ k1u3(x, t) (4.3a)

u2(x, t) = v2(ξ, t)+ k2u3(x, t) (4.3b)

u3(x, t) = [(k · x)v3(ξ, t)− k1v1(ξ, t)− k2v2(ξ, t)]/(k · k) (4.3c)

p(x, t) = q(ξ, t)+ τ2(t)(k · x)2/(k · k) (4.3d)

where

ξ1 = x1− k1x3 ξ2 = x2− k2x3 k = (k1, k2, 1)

with k · k 6= 0. Further,v(ξ, t) andq(ξ, t) satisfy the system

v1,t + v1v1,ξ1 + v2v1,ξ2 + (1+ k2
1)qξ1 + k1k2qξ2 − νD2v1 = 0 (4.3e)

v2,t + v1v2,ξ1 + v2v2,ξ2 + (1+ k2
2)qξ2 + k1k2qξ1 − νD2v2 = 0 (4.3f)

2(v2
1,ξ1
+ v2

2,ξ2
+ v1,ξ1v2,ξ2 + v1,ξ2v2,ξ1 + τ2)+D2q = 0 (4.3g)

v3+ v1,ξ1 + v2,ξ2 = 0 (4.3h)

with

D2 ≡ (1+ k2
1)
∂2

∂ξ2
1

+ 2k1k2
∂2

∂ξ1∂ξ2
+ (1+ k2

2)
∂2

∂ξ2
2

.

Further by (2.2c), by rescaling if required, one may choose(k1, k2) to be one of the
set {(0, 0), (i, i), (i,−i), (−i, i), (−i,−i)}. Additionally, it is noted that in the physical
situation for whichk1 = k2 = 0, the flow is essentially two-dimensional inx1, x2 (and t),
supplemented by a linear expansionu3 = x3v3(x1, x2, t).
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Reduction 4.Solving the associated surface conditions (1.6) with infinitesimals (3.4b) yields
the reduction

u1(x, t) = k1x3v3(ξ, t)+ v1(ξ, t) (4.4a)

u2(x, t) = k2x3v3(ξ, t)+ v2(ξ, t) (4.4b)

u3(x, t) = (x3+ k1ξ1+ k2ξ2)v3(ξ, t)− k1v1(ξ, t)− k2v2(ξ, t)− τ2(t)

k1ξ1+ k2ξ2)
(4.4c)

p(x, t) = q(ξ, t)+
[

τ ′3(t)
2(k1ξ1+ k2ξ2)

+ τ 2
3 (t)

4(k1ξ1+ k2ξ2)3
+ τ2(t)(k1ξ1+ k2ξ2)

]
x3 (4.4d)

whereξ1 = x1 − k1x3 and ξ2 = x2 − k2x3, with k2
1 + k2

2 + 1 = 0. Further, the functions
v(ξ, t) andq(ξ, t) satisfy the system

−k2
2v1,ξ1 + k1k2(v1,ξ2 + v2,ξ1)− k2

1v2,ξ2 + 2v3− (k1ξ1+ k2ξ2)(k1v3,ξ1 + k2v3,ξ2)

+ τ3

(k1ξ1+ k2ξ2)2
= 0 (4.4e)

v1,t + v1v1,ξ1 + v2v1,ξ2 +
[
(k1ξ1+ k2ξ2)v3− k1v1− k2v2− τ3

k1ξ1+ k2ξ2

]
×(k1v3− k1v1,ξ1 − k2v1,ξ2)+ qξ1 + ν[D2v1+ 2k2

1v3,ξ1 + 2k1k2v3,ξ2] = 0

(4.4f)

v2,t + v1v2,ξ1 + v2v2,ξ2 +
[
(k1ξ1+ k2ξ2)v3− k1v1− k2v2− τ3

k1ξ1+ k2ξ2

]
×(k2v3− k1v2,ξ1 − k2v2,ξ2)+ qξ2 + ν[D2v2+ 2k1k2v3,ξ1 + 2k2

2v3,ξ2] = 0

(4.4g)

v3,t + v1v3,ξ1 + v2v3,ξ2 + v2
3 −

[
(k1ξ1+ k2ξ2)v3− k1v1− k2v2− τ3(t)

k1ξ1+ k2ξ2

]
×(k1v3,ξ1 + k2v3,ξ2)−

τ ′3(t)
2(k1ξ1+ k2ξ2)2

− 3τ 2
3 (t)

4(k1ξ1+ k2ξ2)4
+ τ2+ νD2v3 = 0

(4.4h)

where

D2 ≡ k2
2
∂2

∂ξ2
1

− 2k1k2
∂2

∂ξ1∂ξ2
+ k2

1
∂2

∂ξ2
2

.

4.3. Reductions arising from infinitesimals (3.4c)

The final possibilities for reductions of the Navier–Stokes equations via the nonclassical
method arise through consideration of the fourth set of infinitesimals (3.4c). The solution of
the invariant surface condition depends on properties of the vectorsc, k andτ (t) appearing
in the form of the infinitesimals.

Reduction 5.In the generic case whenc · τ (t) 6≡ 0, c 6= 0 andc2 = c · c 6= 0 we obtain the
reduction

u1(x, t) = v1(ξ, t) cos(τ−1x3)− v2(ξ, t) sin(τ−1x3)− τ−1x2v3(ξ, t) (4.5a)

u2(x, t) = v1(ξ, t) sin(τ−1x3)+ v2(ξ, t) cos(τ−1x3)+ τ−1x1v3(ξ, t) (4.5b)

u3(x, t) = v3(ξ, t)+ τ ′τ−1x3 (4.5c)

p(x, t) = q(ξ, t)+ τ4x3− 1
2τ
′′τ−1x2

3 (4.5d)
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where

ξ1 = x1 cos(τ−1x3)+ x2 sin(τ−1x3) ξ2 = −x1 sin(τ−1x3)+ x2 cos(τ−1x3)

with τ(t) ≡ |τ (t)| andτ ′(t) ≡ dτ/dt , andv(ξ, t) andq(ξ, t) satisfy

v1,ξ1 + v2,ξ2 + τ−1τ ′ = 0 (4.5e)

v1,t + v1v1,ξ1 + v2v1,ξ2 − 2τ−1v2v3− τ−2ξ1v
2
3 + 2τ−2τ ′ξ2v3+ τ4τ

−1ξ2

+τ−2[(τ 2+ ξ2
2 )qξ1 − ξ1ξ2qξ2]

−ντ−2[D2v1− 2(ξ2v2,ξ1 − ξ1v2,ξ2)− 2τv3,ξ2 − v1] = 0 (4.5f)

v2,t + v1v2,ξ1 + v2v2,ξ2 + 2τ−1v1v3− τ−2ξ2v
2
3 − 2τ−2τ ′ξ1v3− τ4τ

−1ξ1

+τ−2[(τ 2+ ξ2
1 )qξ2 − ξ1ξ2qξ1]

−ντ−2[D2v2+ 2(ξ2v1,ξ1 − ξ1v1,ξ2)+ 2τv3,ξ1 − v2] = 0 (4.5g)

v3,t + v1v3,ξ1 + v2v3,ξ2 + τ−1τ ′v3+ τ−1ξ2qξ1 − τ−1ξ1qξ2 + τ4− ντ−2D2v3 = 0 (4.5h)

with

D2 ≡ (τ 2+ ξ2
2 )
∂2

∂ξ2
1

− 2ξ1ξ2
∂2

∂ξ1∂ξ2
+ (τ 2+ ξ2

1 )
∂2

∂ξ2
2

− ξ1
∂

∂ξ1
− ξ2

∂

∂ξ2
.

Reduction 6.In the case whenc · τ (t) 6≡ 0, c 6= 0 andc · c = 0 we obtain the reduction

u1(x, t) = 1
2

√
2{v1(ξ, t)+ v2(ξ, t)+ s[v3(ξ, t)+ τ ′1+ τ ′2] + 1

2s
2[v2(ξ, t)+ τ ′3] + 1

6s
3τ ′2}
(4.6a)

u2(x, t) = 1
2i
√

2{v1(ξ, t)− v2(ξ, t)+ s[v3(ξ, t)+ τ ′1− τ ′2] + 1
2s

2[v2(ξ, t)+ τ ′3] + 1
6s

3τ ′2}
(4.6b)

u3(x, t) = −i{v3(ξ, t)+ s[v2(ξ, t)+ τ ′3] + 1
2s

2τ ′2} (4.6c)

p(x, t) = q(ξ, t)+ s(τ4− τ ′′2 ξ1− τ ′′3 ξ2)+ 1
2s

2(τ ′′2 ξ2+ τ3τ
′′
3 − τ1τ

′′
2 − τ2τ

′′
1 )

+ 1
6s

3(τ2τ
′′
3 − τ3τ

′′
2 )− 1

24s
4τ2τ

′′
2 (4.6d)

where

ξ1 = 1
2

√
2(x1− ix2)− s(ix3+ τ1)+ 1

2s
2τ3+ 1

3s
3τ2 ξ2 = −ix3+ sτ3+ 1

2s
2τ2

s =
√

2 (x1+ ix2)

2τ2

andv(ξ, t) andq(ξ, t) satisfy the coupled system

τ2v1,ξ1 + (ξ2− τ1)v2,ξ1 + τ3v2,ξ2 − τ2v3,ξ2 + τ ′2 = 0 (4.6e)

τ2v1,t + v2(v3+ τ ′1)+ τ2v1v1,ξ1 + (ξ2− τ1)v2v1,ξ1 − τ2v3v1,ξ2 + τ3v2v1,ξ2

+τ4− τ ′′2 ξ1− τ ′′3 ξ2+ (ξ2− τ1)qξ1 + τ3qξ2 − ν[D2v1+ 2v3,ξ1] = 0 (4.6f)

τ2v2,t + τ ′2v2+ τ2v1v2,ξ1 + (ξ2− τ1)v2v2,ξ1

+τ3v2v2,ξ2 − τ2v3v2,ξ2 + τ2qξ1 − νD2v2 = 0 (4.6g)

τ2v3,t + v2(v2+ τ ′3)+ τ2v1v3,ξ1 + (ξ2− τ1)v2v3,ξ1

+τ3v2v3,ξ2 − τ2v3v3,ξ2 + τ2qξ2 − ν[D2v3+ 2v2,ξ1] = 0 (4.6h)

with

D2 ≡ 2(ξ2− τ1)
∂2

∂ξ2
1

+ 2τ3
∂2

∂ξ1∂ξ2
− τ2

∂2

∂ξ2
2

.
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Reduction 7.If c · τ (t) ≡ 0 andc 6= 0 then the pressure field in the reduced form can take
one of three identities. Thus we obtain the reduction

u(x, t) = (ξ2
2c− ξ1x)v1(ξ, t)+ (c2x− ξ1c)v2(ξ, t)+ (x ∧ c)v3(ξ, t)

c2ξ2
2 − ξ2

1

(4.7a)

p(x, t) = q(ξ, t)

+



τ4(t)

c
sin−1

[
ξ1ck − c2xk

(c2
i + c2

j )
1/2(c2ξ2

2 − ξ2
1 )

1/2

]
if c 6= 0, c2

i + c2
j 6= 0

ciτ4(t)

cj ck
ln

[
cixi + cjxj
(c2
kξ

2
2 − ξ2

1 )
1/2

]
if c2

i + c2
j = 0, ci, cj , ck 6= 0

τ4(t)(cixj − cjxi)
ciξ1

if c = 0, ck 6= 0

(4.7b)

where(i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}, ξ1 = c · x, ξ2 = (x · x)1/2, c = (c · c)1/2,
andv(ξ, t) andq(ξ, t) satisfy

v1,ξ1 + ξ−1
2 v2,ξ2 = 0 (4.7c)

v1,t + v1v1,ξ1 + ξ−1
2 v2v1,ξ2 + c2qξ1 + ξ1ξ

−1
2 qξ2 − ν(D2v1+ 2ξ−1

2 v1,ξ2) = 0 (4.7d)

v2,t + v1v2,ξ1 + ξ−1
2 v2v2,ξ2 + (c2ξ2

2 − ξ2
1 )
−1(−ξ2

2v
2
1 + 2ξ1v1v2− c2v2

2 − v2
3)

+ξ1qξ1 + ξ2qξ2 − ν(D2v2− 2v1,ξ1) = 0 (4.7e)

v3,t + v1v3,ξ1 + ξ−1
2 v2v3,ξ2 − τ4− νD2v3 = 0 (4.7f)

with

D2 ≡ c2 ∂
2

∂ξ2
1

+ 2ξ1ξ
−1
2

∂2

∂ξ1∂ξ2
+ ∂2

∂ξ2
2

.

Reduction 8.Finally whenc = 0 we obtain the reduction

u1(x, t) = (τ ′1+ τ1τ
′
3τ
−1
3 )x3+ v1(ξ, t)+ τ1v3(ξ, t) (4.8a)

u2(x, t) = (τ ′2+ τ2τ
′
3τ
−1
3 )x3+ v2(ξ, t)+ τ2v3(ξ, t) (4.8b)

u3(x, t) = τ ′3τ−1
3 x3+ v3(ξ, t) (4.8c)

p(x, t) = q(ξ, t)− x3[τ−1
3 (τ1τ3)

′′ξ1+ τ−1
3 (τ2τ3)

′′ξ2− τ4] − 1
2x

2
3[τ−1

3 (τ1τ3)
′′τ1

+τ−1
3 (τ2τ3)

′′τ2+ τ−1
3 τ ′′3 ] (4.8d)

whereξ1 = x1− τ1x3 andξ2 = x2− τ2x3, andv(ξ, t) andq(ξ, t) satisfy

v1,ξ1 + v2,ξ2 + τ−1
3 τ ′3 = 0 (4.8e)

v1,t + v1v1,ξ1 + v2v1,ξ2 + 2τ ′1v3+ (1+ τ 2
1 )qξ1

+τ1τ2qξ2 + τ1[τ−1
3 (τ1τ3)

′′ξ1+ τ−1
3 (τ2τ3)

′′ξ2− τ4] − νD2v1 = 0 (4.8f)

v2,t + v1v2,ξ1 + v2v2,ξ2 + 2τ ′2v3+ (1+ τ 2
2 )qξ2 + τ1τ2qξ1

+τ2[τ−1
3 (τ1τ3)

′′ξ1+ τ−1
3 (τ2τ3)

′′ξ2− τ4] − νD2v2 = 0 (4.8g)

v3,t + v1v3,ξ1 + v2v3,ξ2 + τ−1
3 τ ′3v3− τ1qξ1 − τ2qξ2

−τ−1
3 (τ1τ3)

′′ξ1− τ−1
3 (τ2τ3)

′′ξ2+ τ4− νD2v3 = 0 (4.8h)

with

D2 ≡ (1+ τ 2
1 )
∂2

∂ξ2
1

+ 2τ1τ2
∂2

∂ξ1∂ξ2
+ (1+ τ 2

2 )
∂2

∂ξ2
2

.
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5. Discussion

In this work we have initiated the task of seeking nonclassical symmetry reductions of
the full Navier–Stokes equations and done so by undertaking a systematic study of forms
which take the Navier–Stokes equations to partial differential equations in three independent
variables. It is well known that solutions of partial differential equations tend asymptotically
to solutions of lower-order equations determined by symmetry reduction [1] and so it
is probable that the solutions of our reduced equations will illustrate important physical
phenomena. As very few exact solutions of equations (1.1a, b) exist, further information
on possible solutions is undoubtedly of significant value.

It is well established that for most partial differential equations the nonclassical method
is more general than the classical approach (although, as demonstrated by Bluman and Cole
[2] in their study of the one-dimensional heat equation, it is possible that the nonclassical
technique will not generate anything additional to the classical results). In order to compare
the two methods in the case of the Navier–Stokes equations (1.1a, b), we review quickly
the reductions found by Fushchych and Popowych [15, 16] in their comprehensive study
of the classical approach. Our reductions 1, 2 and 5 (which is equivalent to reduction 7
when c · c 6= 0; c can be taken to be(0, 0, 1) by appeal to symmetry condition (2.2c))
are equivalent to the first three forms listed by Fushchych and Popowych. These authors
also obtained most of the results contained within our reductions 5–8. Although it is not at
all obvious on initial inspection, if our forms are converted into real canonical coordinates
(that is, such that the only second derivatives in the resultant partial differential equations
are two-dimensional Laplacian), and if suitable rotations in the two new spatial variables
are made, then the forms quoted in [15, 16] are retrieved.

The most dramatic aspect of our work is that reductions 3 and 4 are completely novel
and, moreover, cannot be derived by classical means. This is clear when it is noted that
the infinitesimals used to find these reductions are not a subset of the invariance conditions
(2.2a–e) even allowing for the possibility of multiplication by an arbitrary function of
(x, t,u, p). It is to be expected that these reductions could lead to new physically relevant
solutions. It is interesting to note that these reductions arise in the case whenT ≡ 0, where
T is the infinitesimal associated witht . We remark that nonclassical reductions which are
not obtainable using the classical method in theT ≡ 0 case, rather than the generic case
whenT ≡ 1, occur for other multi-dimensional equations (see, for example, [9, 12–14, 22]).

We have emphasized that what has been performed here is the first, but nonetheless
vital, step in nonclassical reduction of the Navier–Stokes equations to ordinary differential
equations. Although we have been successful in reducing the number of independent
variables in our governing system from four to three, the results are too complicated to
expect to be able to find direct analytical solutions. Conversely, this reduction means that
the numerical solution of the new equations should be much more feasible than a direct
simulation of the full forms (1.1a, b). Indeed, even with rapid modern advances in hardware
and software, the reliable numerical solution of (1.1a, b) continues to represent an awesome
computational task, while study of the two-dimensional Navier–Stokes equations (which
has the same number of independent variables as any of the systems listed in section 3)
has become much more routine. Numerical investigation of the reduced Navier–Stokes
equations would be of great interest.

The next step along the analytical road is clear. Each of the reduced forms given in the
preceding section need to be subjected to the nonclassical method in order to seek further
systems in two independent variables which in turn could be taken into ordinary differential
equations. This is clearly a huge task but in his PhD thesis Ludlow [20] began the process
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by focusing on equations (4.2a–d) with A and B as given by (4.2e, f ). It can be shown
that there are five canonical reductions of this system and that four of these are retrievable
by classical techniques. The fifth reduction, given by

(u1(x), u2(x), u3(x)) = (v1(x1, x2)− cx2, v2(x1, x2)+ cx1, x3v3(x1, x2)) (5.1a–c)

p(x) = q(x1, x2)+ `2x
2
3 + 1

2c
2(x2

1 + x2
2) (5.1d)

wherec and`2 are arbitrary constants,v3(x1, x2) = −(v1,x1+v2,x2) andv1(x1, x2), v2(x1, x2)

andq(x1, x2) satisfy

−2cv2+ v1v1,x1 + v2v1,x2 + qx1 − ν∇2v1 = 0 (5.1e)

2cv1+ v1v2,x1 + v2v2,x2 + qx2 − ν∇2v2 = 0 (5.1f)

(v1,x1)
2+ v1,x1v2,x2 + v2v1,x1 + (v2,x2)

2+ c(v1,x2 − v2,x1)+ `2+ 1
2∇

2q = 0 (5.1g)

is truly nonclassical. This reduction is new and it is noted that it is invariant under
a one-parameter infinitesimal generator of the Navier–Stokes equations; this is a direct
consequence of the fact that reduction 2 itself is a classical reduction of (1.1a, b). Therefore
a necessary condition for (2.2) to be obtainable by classical means is that it is invariant
under a two- or three-parameter generator of the Navier–Stokes equations. Although this is
the case for certain choices of the dependent variablesv1, v2 andv3, it is untrue in general.

Ludlow [20] continued his study to examine further reductions of (5.1a–d) to ordinary
differential equations. As well as some well known exact solutions of (1.1a, b), two
particular forms were uncovered.

Example 1.The first new solution of (1.1a, b) is given by

(u1(x, t), u2(x, t), u3(x, t)) = ν
(
v1(x1), x2v2(x1),−x3v2(x1)− x3

dv1

dx1

)
(5.2a)

p(x, t) = ν2

(
−ax2

2 + `1x
2
3 +

dv1

dx1
− 1

2v
2
1(x1)

)
(5.2b)

in which a and`1 are constants andv1(x1) andv2(x1) satisfy

d2v2

dx2
1

− v1
dv2

dx1
− v2

2 + 2a = 0 (5.2c)

d

dx2
1

(
dv1

dx1
+ v2

)
− v1

d

dx1

(
dv1

dx1
+ v2

)
+
(

dv1

dx1
+ v2

)2

+ 2`1 = 0. (5.2d)

Although a number of exact solutions of (5.2c, d) are known (for example, solutions in
which v1 is linear andv2 is constant) this generalized form of the reduction is completely
new. It is straightforward to scalea from the problem by writingv1(x1) = (2a)1/4V1(X),
v2(x1) = (2a)1/2V2(X), X ≡ (2a)1/4x1 and the reduced equations (5.2c, d) become

d2V2

dX2
− V1

dV2

dX
− V 2

2 + 1= 0 (5.3a)

d2

dX2

(
dV1

dX
+ V2

)
− V2

d

dX

(
dV1

dX
+ V2

)
+
(

dV1

dX
+ V2

)2

+ `1

a
= 0. (5.3b)

A representative numerical solution of this system is shown in figure 1; the boundary
conditionsV1 = dV1

dX = V2 = 0 atX = 0 have been chosen as these correspond to zero fluid
velocity on the boundaryx3 = 0 (see (5.2a)). The solutions shown indicate that|V1| grows
linearly asX → ∞ while V2 asymptotes to a constant in the same limit. Physically, for
large arguments the three velocity components are proportional to the three coordinatesx1,
x2 andx3 so that this solution is indicative of a shearing-type flow structure.
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Figure 1. Numerical solution of system (5.3) solved subject to the typical no-slip conditions
V1 = dV1

dX = V2 = 0 at X = 0. The parameter̀1/a = −1 but the general structure of the
solution is insensitive to this ratio. The full curve denotesV1(X)/4; the broken curveV2(X).

Example 2.The second new solution discovered by Ludlow [20] is given by(
u1(x, t)
u2(x, t)
u3(x, t)

)
=
( cosct − sinct 0

sinct cosct 0
0 0 1

) νv1(ξ1)− cξ2

ν2v2(ξ1)− νbξ2− cξ1

νx3

(
b − dv1

dξ1

)
 (5.4a)

p(x, t) = − 1
2(νbξ2+ 2cξ1)

2+ ν2dξ2− ν2`2x
2
3 + 1

2c
2(ξ2

1 + ξ2
2 )− 2ν2q(ξ1) (5.4b)

whereb, c, d and`2 are arbitrary constants,ξ1 = x1 cosct+x2 sinct , ξ2 = x2 cosct−x1 sinct
andv1(ξ1), v2(ξ1) andq(ξ1) satisfy

d3v1

dξ3
1

− v1
d2v1

dξ2
1

+
(

dv1

dξ1
− b

)2

− 2`2 = 0 (5.4c)

d2v2

dξ2
1

− v1
dv2

dξ1
+ bv2− d = 0 (5.4d)

d2v1

dξ2
1

− v1
dv1

dξ1
+ 2cv2+ 2

dq

dξ1
= 0. (5.4e)

The third of these equations is decoupled from the other two and, moreover, some parameters
can be removed by re-definingv1(ξ1) = b1/2V1(X), v2(ξ1) = dV2(X) andX = b1/2ξ1. The
important equations then become

d3V1

dX3
− V1

d2V1

dX2
+
(

dV1

dX
− 1

)2

− 2`2

b2
= 0 (5.5a)

d2V2

dX2
− V1

dV2

dX
+ V2− 1

b2
= 0. (5.5b)

Figure 2 shows numerical solutions of (5.5a, b) with the boundary conditionsV1 = dV1
dX =

V2 = 0 atX = 0 imposed and the parameter`2/b
2 = 2. As with the previous solution, the

componentV1 decreases linearly asX → ∞ while V2 tends to a constant. We note that
the nontrivial structure of the solution of (5.5a, b) is dependent only on the ratiò2/b2; the
particular value ofb2 in (5.5b) is easily accounted for by scaling ofV2.
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Figure 2. Numerical solution of system (5.5) with̀2 = 2b2. The full curve denotesV1(X);
broken curveV2(X).

This brief account indicates how the form of reduction 2 may be used to generate solutions of
the Navier–Stokes equations (1.1a, b) in terms of solutions of ordinary differential equations.
For a complete catalogue of nonclassical reductions to ordinary differential equations it is
obvious that the same procedure needs to be applied to each of the other reductions listed
in section 3. This would inevitably be a very lengthy and substantial task that could
only be sensibly envisaged if the most efficient algorithms are implemented. Amongst
such considerations is the observation that for further work on reductions 3–8 it would be
advantageous to write them in terms of characteristic coordinates and, if this transpires not
to be feasible, then a transformation should be applied that minimizes as far as possible
the number of occurrences of second-order derivatives. This is essential for efficiency as
it leads to a significant reduction in the number of determining equations that arise. Once
new reductions are found they need to be subjected to careful analysis which, more than
likely, would require the generation of numerical solutions.

To summarize, here we have begun the task of constructing systematically a careful
catalogue of nonclassical symmetry reductions of the full unsteady Navier–Stokes equations.
Our intention has been to record the full results of the nonclassical reduction of the four-
dimensional governing equations to systems involving only three independent variables.
Although we have summarized how further work on our reduction 2 leads to novel solutions
governed by ordinary differential sets of equations, there is still much to do in relation to
the other reductions. To date only a comprehensive study of the classical method as it
applies to (1.1a, b) has been accomplished. An open question remains as to whether other
symmetry reduction methods may yield yet more information—for example, Clarkson and
Kruskal’s [10] direct method based on an ansatz approach. (We remark that a review of
the more common symmetry reduction techniques and a critique of their various strengths
and weaknesses has been compiled by Clarkson [8].) Above all, there undoubtedly remains
much information encoded in the symmetry properties of the Navier–Stokes equations yet
to be discovered. Further studies of this topic should yield more exact and physically
significant solutions of (1.1a, b) which may hold the key to important phenomena in the
real world.
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